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Introduction
Variable stiffness actuator (VSA) has been widely imple-

mented to rehabilitation devices. The mechanical stiffness
is proportional to the closed-loop bandwidth, which leads
to an advantage of VSA to achieve different tasks. For the
controller design, a linear parameter-varying (LPV) sys-
tem is formed due to the stiffness variation. Based on the
LPV model, a gain-scheduled torque control approach is
presented in this paper.
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Figure 1: Mechanical design of the VSA

The actuator prototype is proposed in Fig. 1, where a
double-motor driving system is achieved to control the joint
(by Motor 1) and stiffness (by Motor 2) independently. The
stiffness transmission is dependent on the controllable ef-
fective length of the bending bar by moving the rollers po-
sition, which can be classified as the adjustable lever-arm
mechanism [1].

Table 1: Nomenclature and actuator specifications

Symbol Specification
θ1 Motor 1 position
ω1 Motor 1 speed
θ2 Motor 2 position
θ j Joint position
γ1 Gear ratio
Tj Joint torque

K j(θ2) Variable stiffness function
TM1 Motor input torque
J1 Moment inertia of motor
B1 Friction constant of motor

Actuator performance Value
Stiffness range 200 - 500 Nm/rad

Weight 3.1 kg

To facilitate the derivation of the model, the parameters
using in this paper are given in Table 1.
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Figure 2: Control structure of the VSA: Open-loop torque
control

Fig. 2 presents a cascaded control system including the
VSA dynamics. The inner loop was set to be a speed con-
trol model with a Proportion-Integrate (PI) controller. For
the controller design, the following assumptions were made:

1. For the simplification of LPV modelling, the vari-
able parameter K j(θ2) is regarded as an exogenous
signal, for which the coupled torque between the
joint motion and stiffness variation are neglected.

2. For torque controller design, the fixed-load condi-
tion is generally provided (i.e. θ j = 0).

The dynamical equation of the VSA is then given by:

TM1 = J1θ̈1 +B1θ̇1 +
Tj

γ1
(1)

where
Tj = K j(θ2)θ1/γ1 (2)

was obtained by using Hooke’s Law.
Combining Eq. (1) and (2), the cascaded system in Fig .2

can be written as a state-space LPV model with the variable
parameter K j(θ2):

ẋ = A(K j(θ2))x+Bu (3)
y = C(K j(θ2))x

where (A, B, C) is the state-space realization, x = [ω1,out ,
θ1,out , θ1,in]T , u = TM1 and y = Tj are the state, input and
output vector, respectively.

Torque Controller Design

In our paper, the requirements for control performance are
given by:

1. The closed-loop bandwidth should be larger than
the natural frequency of human leg (i.e., 5 Hz).

2. Zero steady state error for torque tracking.
3. Robust stability with respect to the modeled dynam-

ics.



A classical PI controller can be used to guarantee the sta-
bility for the torque control-loop. The goal in the controller
design is to meet the requirement in the whole operating
points. Therefore, a gain-scheduled PI controller based on
the interpolation method (see [2]) is proposed.
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Figure 3: Closed-loop torque control

To guarantee robust stability for the closed-loop system,
an H∞ loop-shaping controller is then synthesized [3]. The
final control structure is given in Fig. 3, where the control
objective is the open-loop system in Fig. 2, K∞ is the H∞

controller, K∞(0) is a constant pre-filter and KPI(K j(θ2)) is
the gain-scheduled PI controller.

Algorithm Example and Experiment
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Figure 4: Stiffness versus proportional gain (Kp)

We first choose the minimum and maximal stiffness as
the operating points to adjust the PI controller (denoted as
a transfer function form, i.e., KP(K j(θ2)) + KI/s). The in-
tegral gain, KI = 20, was set to a constant due to the limited
influence on bandwidth. A linear fitting function between
stiffness and proportional gain is given in Fig. 4.

To satisfy the stability for the parameter-varying system,
the problem comes to find a symmetric matrix, X(K j(θ2)),
such that [4]:

(4)
X(K j(θ2))Â(K j(θ2)) + Â(K j(θ2))

T X(K j(θ2))

+ K̇ j(θ2)
∂X(K j(θ2))

∂K j(θ2)
< 0

where Â(K j(θ2)) is the system A matrix of the closed-loop.
Based on the actuator specifications, we have K j(θ2) ∈
[200, 500] Nm/rad and the maximum speed of stiffness
variation is K̇ j(θ2) = 80 Nm/rad/s. In such case, the closed-
loop system can meet stability by solving the LMI in Eq.
(4). For the robust controller design, a linear time invariant
system is achieved by adjusting K j(θ2) = 350 Nm/rad and
Kp = 160 to be frozen. An reduced-order H∞ controller (3th

order) is then obtained by solving two Riccati equations in
Matlab.
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Figure 5: Prototype of the test bench
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Figure 6: Square wave test of the closed-loop system

A hardware-in-the-loop test in dsPACE has been imple-
mented to control the system on a test bench (see Fig. 5).
A real-time square wave test with stiffness variation was
used to excite to the system. Fig. 6 shows that the gain-
scheduled system can achieve a good tracking performance.

Conclusion
A gain-scheduled control approach has been achieved in

this paper. For the future discussion, the bandwidth per-
formance could be analyzed from different aspects, such as
frequency response function and Human-in-the-loop test.
Comparison with the LTI control system, the control method
possess a better tracking performance and robustness.
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